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Anisotropic triangular Ising model in the extended mean-field renormalization-group approach
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The recently proposed multi-interaction mean-field renormalization techpi@ul. Likos and A. Maritan,
Phys. Rev. 553, 3303(1996 ] is applied to the Ising model on a triangular lattice with equal couplings in two
directions and a different coupling in the third, a model equivalent to a square Ising model with additional
second-neighbor interactions alongiagle diagonal direction. Three different clusters are considered and the
possible mappings between them are discussed. The estimates for critical couplings and exponents are in
satisfactory agreement with exact results. An explanation of the way in which the finite-size features of the
method bring about a systematic overestimation of the critical temperature is also given.
[S1063-651%97)06402-1

PACS numbgs): 64.60.Ak, 64.60.Fr, 05.70.Jk

Recently, an extension of the mean-field renormalization-
group(MFRG) approact1,2] has been proposda], which H=—T2 si5—K > ss—BX s, )
is capable of dealing with lattice Hamiltonians with two cou- i i) '
pling constants, under certain restrictions on the geometry of
the lattice and the ground states of the model. This extende\g

MFRG (EMFR.G) tgchnlq.u_e ha_s been applied to a number 01Eleaning nearest-neighbor bonds, the second over left-leaning
d|ffe_rent_ Hamiltoniang3J; in th's paper, we prgsent a_nother nearest-neighbor bondsalso called “diagonals), and the
appllcat_lon of the mefch(_)d, this time to the an|§otrop|c t”_an'third over sites B is the magnetic field.Alternatively, the
gular Ism_g mo_del. This is a _system_of Ismg Spins on qman'triangular lattice can be thought of as a square lattice with
gular lattice with nearest-neighbor interactions, but with thenearest—neighbor interactiorisoupling constant’) and a
strength of the coupling being diffgrent along the three a?(eiingle second-neighbor interaction along left-leaning diago-
of the triangular lattice. An extensive study of the properties o (coupling constantC) [4,5]. This is the point of view
of this system, including the behavior of correlation func-Which we adopt for the rest ’of the paper

tions, has been presented in a series of papers by Stephensonln the special casg/=K, the usual triangulatantiferro-

[4]. . magnetic Ising model is recovered, faf<0) 7>0. Simi-

I_n this Worl_< we con_3|der a Spec'?" carse of the model, Ir]Iarly, the nearest-neighbor square Ising model with coupling
which the anisotropy is more restricted: we take the cou- _ e

. . S : . .~ constant7 results whern'C=0, whereas if7=0 the model
plings to be equal in two directions in the triangular lattice

but different from these, in general, along the third one. Thusreduces to decoupled one-dimensional Ising chains along the

N . . . diagonals, with nearest-neighbor couplikg
we have a Hamiltonian with two coupling constants, which .
. ! - o The ground states of the model follow from a straightfor-
is the first prerequisite for the application of the EMFRG as ) L
: . ) . o ward calculation. Keeping in mind that the problem has been
it was presented in Ref3]; we establish the region in pa-

. : recast in terms of spins onsjuarelattice we find the fol-
rameter space where the additional requirements for the R~ ving T=0 phase diaaram for the model: in the reaion
plication of the EMFRG are met, and derive the 9 P 9 : 9

renormalization-group flows. We show that the EMFRG is{i>0;lc>. _t‘h7} the. gt;ir:)q’cs;ate _|ts_ ferr(z_r:agnet(EM)t,.
successful in producing the qualitative features of the fIows\(/:la\Fe'\r/le)""s_Ilr1 € I’eg.IO'I{I - j}d'l 'IS an |.e][.ro.:n‘|elgne Ic
and the fixed points of the mapping. The quantitative accu- : € remaining region displays infinitely many

racy is typical of MERG types of techniques and, at theground states; within the domaid< —|J], the randomness

trivial fixed points of the iteration, the magnetic eigenvalue ,Of the ground state is one dimensioifizéedom of combin-

are exact. We find that the critical temperature of the modelnd Plaquettes is restricted along a Sinl%le horizontal or verti-
is consistently overestimateih comparison with exact re- Ccal strip, the T=0 entropy scales a™* (whereN is the
sulty and we trace this overestimation to the fact that ong?umber of lattice sitgs and the entropy per site vanishes at
eigenvalue in a particular fixed point is found in this methodthe thermodynamic limit. On the other harah the border-
to be marginally relevant. This marginality is an artifact line £=J<0 the ground states have a two-dimensional ran-
caused by the finite-cluster character of this approximatglomness, giving rise to the well-known extensive zero-
RG; this provides an understanding of the way in which thetemperature entropy of the AFM triangular model, which
use of finite clusters affects the estimate of the critical temwas calculated a long time ago by Wanriiét. The same is

here the first sum is carried over horizontal and right-

perature in this problem. true for the other borderlingC= — 7<0.
Let us consider a model Hamiltonian of Ising spins According to the general requirements for the implemen-
si==*1 on a triangular lattice, of the form tation of the EMFRG laid down in Ref3], we are going to
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consider the flows of the coupling constants only in the re- Xh =19"ny, . (6)
gion K=0 where there are just the ordered FM and AFM
ground states. The square lattice is separated into the two interpenetrat-

~ We first summarize the main ideas of the EMFRG, refer-ng square sublattices formed by the diagonals of the original
ring the reader to Ref3] for details. From Eq(1) we obtain  gne. The two-sublattice EMFRG imposes, clearly, the choice

the reduced Hamiltonian of clusters with even number of spins, and we will consider
the three smallest values, 2, 4, and 6 in this work. For
=-BH=JD, sisj+K > sisj+ hY s, (2)  N=2 the nearest-neighbor bond is an appropriate cluster. On
i

up i

with J=87, K=BK, and h=885. First, we separate the
given bipartite lattice into two sublattices and B. Let us
consider, next, two clusters &’ and N sites withN’ <N
(all primed symbols which appear hereafter refer to quanti
ties pertaining to the small cluster, and all unprimed ones t
the large ong The methodrequiresthe use of clusters in
which the two sublattices are equivalent. If we denote th

the other hand, the form of the present Hamiltonian rules out
the choice of the elementary plaquette as a posdibiet
cluster because in this case there appears within the cluster a
K coupling between two of the spins of the same sublattice
which is absent for the two spins of the other sublattice. Thus
Tfor N=4 we are led to the choice of the parallelogram whose
Rhort sides are nearest-neighbor bonds and long sides are the
next-nearest-neighbor diagonals along which the coupling

di o e and B sublatti b & exists; the latter couples spins in the same sublattice. Fi-
surrounding magnetizations on tiean sublattices by nally, for N=6 we consider the rectangle which is formed by

b; (b;) andb; (by) for the small(large) cluster, we can adjacent elementary plaquettes.
derive the usual mean-field expressions for the cluster sub- st first sight, it appears that we can now define three

lattice magnetizations of the typmig)(J',K",h",b1,b5)  possible mappings, namely64, 62, and 4-2. If the
andmag)(J,K,h,by,by). Amapping 0,K)—(J",K') inthe  pearest-neighbor coupling vanishes, thenAtendB sublat-
even subspace of the Hamiltonian is defined by requiring tjces completely decouple from each other. Th##ns J=0
L et et vt rde satisfies one of the two equatioriS) above for arbitrary
Ma(J". K", ", by b2) =177hm,(J,K h,by by) - (3) K,K’ in a trivial way, because both sides vanish. This is the
equation which relates the derivatives of the sublattice mag-
netizations with respect to the boundary magnetizations of
b/ =19"Yb,, i=1,2 (4)  the other sublattice. The remaining one is then the flow equa-
tion for the parameteK. If we use the 4-2 mapping, the
to hold to leading orders ih andb;. In Eq.(3) above,d is  mapping is equivalent to a-21 MFRG flow for the one-
the dimension of space, whereas the rescaling factsr  dimensional Ising model. On the other hand, the geometry of
usually defined ad=(N/N)*. From Egs.(3) and (4) the N=6 cluster is such that for the case=0 the cluster
above, we now obtain the two flow equations in the everdegenerategfor each sublatticeinto a two-spin cluster and

along with

sector of the Hamiltonian in the form an additional one-spin cluster. In other words, the maximum
number of interacting spins in the cluster is, in this cdle,
Imp(J',K",h’",b") ~ dma(J,K,h,b) sameas that for theN=4 cluster. In that respect, tHé=6
ab; h,:b,zo_ ab; h=b:01 cluster is not “larger” than thaN=4 one along thel=0

direction in Hamiltonian space, and it is at first doubtful
i=1,2 (5)  Whether the 6+4 mapping will be meaningful at all. Indeed,

it turns out that if one attempts such a mapping, one obtains
whereb’ [b] is a shorthand forl{; ,b}) [(b;,b,)]. Itis here  the erroneous resulthat at the high-temperature fixed point
that the requirement for the equivalence of the sublattices id, =(0,0) there existsone relevant eigenvalualong the
the clusters becomes crucial, because it guarantees that tf@1) direction. This pathology is due to the reasons ex-
flow equations are the same, regardless of the choice of th@ained above, and therefore a-8¢ mapping is ruled inad-
sublattice magnetization used in E) above[3]. The even missible. Hence only the-42 and 6—2 mappings will be
eigenvalues\; (i=1,2) are obtained from the linearization considered here.

around the fixed poind, =(J, ,K,) of Eq. (5). The mag- We begin with the simpler mapping—42. The recursion
netic exponenyy, is calculated from the scaling of the sus- relations expressing the renormalized couplingsK') in
ceptibility y at the fixed point, namely, terms of the original onesJ(K) read as

e?X[5Jsinh(3J) + 2K cosh3J)]— Jsinh(J) + 2K coshJ)
e’Kcosh3d)+(2+e ?X)coshJ)

3J'tanhJ’)+ 2K’ = (7)

and

e?X[2Ksinh(3J) +5Jcosh3J)]+ 5JcoskJ)
e’Kcosh3Jd)+(2+e ?X)coshJ)

3J'+2K'tanh(J’)= 8
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TABLE |. The ferromagnetic critical fixed points of the RG 1 e

transformation and the associated critical exponents, the critical )
couplings for the square and triangular ferromagnetic Ising models 08 L i
as predicted by the present work, and the exact results for compari-
son.

g 0.6 | B

(‘]* ,K*) Yt Yh ‘]iq ‘]g g

+ 04 —
4—-2 (0.2605,0.1355) 0.648 1434 0.334 0.218 L
6—2 (0.1770,0.3160) 0.694 1474 0.353 0.224 02 I -
Exact 1.000 1.875 0.441 0.275 0

tanh(J)

The fixed points J, ,K,) of the flows in the subspace  FIG. 1. RG flows of the present model obtained by the &
K=0 are the following: there are two low-temperature stablemapping. The stars denote fixed points. The dotted lines are at-
fixed points,L,=(+%,+0) representing the FM ground tracted to either the low- or the high-temperature fixed points. The
state andL,=(—,+x) representing the AFM ground solid curves denote the basins of attraction of the two critical points.
state. There is also the high-temperature fixed poinfrhe dash-dotted curves denote the exact critical lines(®Q.
P=(0,0) representing the paramagnetic phase, which is

stable as well. AL ,, the magnetic exponent i§,=2=d as A few remarks can already be made by looking at the
it should be, since this point is a “discontinuity fixed point” symmary of the results shown in Table I. It can be seen that
andy,=d is a signal of a first-order phase chari@é Atthe  the quantitative accuracy of the method is typical of the fam-
paramagnetic fixed point, we obtajp=d/2, again in agree- jly of MFRG type of techniques with the use of small clus-
ment with the exact result arising from the consideration thaters. The critical couplings are off by about 20%, with an
the paramagnetic-phase zero-field susceptibility is a f'”'t‘?mprovement from 24% to 20% fads® and from 20% to

constant. In addition, there exists an unstable fixed poin&s% for ' as the order of the mapping is increased. The
_ H c )
L3=(0,+ <) which represents the zero-temperature orderedisi | temperature is overestimated systematicée be-
state of the one-dimensional Ising chains. Clearly, any depag,, ) The fractional errors on the critical exponents are
ture from this fixed point drives the flows away from it. 3i0er than those for the critical couplings, but again a slow

Finally, there exist two critical points, which are mirror im- improvement is observed as the order of the mapping in-
ages of each other with respect to the 0 axis: the point o cag

C,=(0.2605,0.1335) which corresponds to FM criticality A more detailed analysis of the predictions for the critical

and the pointC,=(—0.2605,0.1335) which corresponds 10 yoneraturer, (Curie poinj is allowed by the existence of

AFM criticality. For bothC, and C, we find one relevant 5 exact expression for this quantity, based on generalized
eigenvalue\,=1.252 yielding the estimatg=0.648 for the 4, 5jity transformationg5]. The locus of critical points is
thermal exponentcf. y;=1 is the exact valye whereas the given by the equation

irrelevant eigenvalue ia,=0.509. The magnetic exponent

at C; is y,=1.434, to be compared with the exact result

yh=1.875. AtC,, we obtain 3,—d=—0.131<0, a charac- e X=sinh(2|J|). (9
teristic of AFM critical points, also found in earlier wofR]

on different models.

_From the intersection of the ferromagnetic critical line on the other hand, the locus of critical points obtained from
with the K=0 andK=J lines we also obtain the estimates oyr approximate RG analysis is given by the critical lines of
for the critical couplings of the square and triangular ferro-the fixed pointsC,, C,; in Fig. 1 we plot for comparison the
magnetic Ising models, respectively, which reli=0.334  exact resul(9) together with the critical lines obtained from
(cf. 0.441 exagtand J{=0.218(cf. 0.275 exaot These re- the 6—2 mapping(the ones obtained from the-42 map-
sults, along with the ones obtained from the other mappinging run very close to those showmlthough the RG gives
are summarized, for comparison, in Table I. correctly the “starting point” of these lines dt=0 for van-

The 6—-2 mapping yields the same low- and high- ishing nearest-neighbor coupling, for finite valuesJothe
temperature fixed points,,L,,L3, andP as the 42 map-  approximate critical line runs systematicaliglowthe exact
ping, also with the correct magnetic expongpt=d atL;  one, thus giving rise to a consistent overestimation of the
and y,=d/2 at P. The two critical fixed points are critical temperature. However, we observe that the shape of
C,=(0.1770,0.3160) an€C,=(—0.1770,0.3160), with ei- the approximate critical line is correct for valueslathat are
genvaluesk ;=1.464 and\,=0.567. The thermal exponent not too close to the origin; the deviation from the exact one
is now y;=0.694 and the magnetic exponent @; is is caused chiefly by its wrong behavior for smallwhere it
yn=1.474; atC, we have again &2y,—d=—0.238. The “sticks” close to theK axis. It can be seen now that this
estimates for the square and triangular Ising critical coubehavior is closely connected to the eigenvalues associated
plings readJi®=0.353 andJi=0.224. The flow diagram is with the fixed pointL ;. By symmetry, the two eigenvectors
shown in Fig. 1; the flow pattern for the previous—~£2, at this point are along the (1,0) and (0,1) directions. The
mapping is identical to that shown in Fig. 1. eigenvalue associated with the latter direction is thus the
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“thermal eigenvalue” of the one-dimensional Ising chain. We have presented a further application of the multi-
The RG gives for this eigenvalue the erroneous predictiofinteraction mean-field renormalization method to the aniso-
that it is marginally relevant; this can easily be seen by intropic triangular Ising model, finding that the method is
troducing the variables =tanh) andt=1—v which mea- qualitatively successful in describing the phases of this
sure the deviation from the one-dimensional critical point,model. From the quantitative aspect, we found the typical
and confirming that the present method gives to linear ordegeviations of the predictions from the exact results. We pre-
t’=t close toL3. As a result of this marginality, the trajec- sented an explanation for the overestimation of the critical
tories in the vicinity of this fixed pointincluding the critical  temperature of this model, arising from the finite-size nature
line) “stick” on the K axis[8]. On the other hand, exact RG f the approach. The study was limited, at present, to the
trlansfor_mauons for the lIsing chain vyield the relation eqion of ferromagnetic diagonal couplings, consistently
t'=2t, i.e., the correct eigenvalue =2 is strictly relevant i, the general restrictions of the method presented in Ref,
5 o iy o e ema e 1 e 7 )T masigaion of e regon o arfaromagnet -
agonal interactions, where an infinity of ground states exists,

MFRG and stems from the use of finite clusters for perf_or_m-.s an obvious challenge and a strong test for the applicability
ing the mapping. Indeed, as was pointed out in the original f MFRG ideas in such “unusual” and interesting cases.

MFRG papei1], the exact thermal eigenvalue in one dlmer]'This would also allow for the study of the antiferromagnetic

sion would involve, in this method, the comparison of two triangular lattice and the associated peculiarities of its zero-

chains withL andL’'=L—1 spins in the limitL —c. So we o : : .
can now see how the finite-size feature of the MFRG aﬁect%ﬁ\r/ggigggi critical point. This problem is currently under

(at least in this applicatigrthe trajectories: it brings about a
distortion of the flow lines due to the wrong prediction of a | would like to thank Amos Maritan for helpful discus-
marginal field which, however, can be cured only by consid-sions. This work has been supported by the Human Capital
ering infinite clusters. This, in turn, results in the systematicand Mobility Programme of the Commission of the Euro-
overestimation off, as explained above. pean Communities, Contract No. ERBCHBICT940940.
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