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Anisotropic triangular Ising model in the extended mean-field renormalization-group approach
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The recently proposed multi-interaction mean-field renormalization technique@C. N. Likos and A. Maritan,
Phys. Rev. E53, 3303~1996!# is applied to the Ising model on a triangular lattice with equal couplings in two
directions and a different coupling in the third, a model equivalent to a square Ising model with additional
second-neighbor interactions along asinglediagonal direction. Three different clusters are considered and the
possible mappings between them are discussed. The estimates for critical couplings and exponents are in
satisfactory agreement with exact results. An explanation of the way in which the finite-size features of the
method bring about a systematic overestimation of the critical temperature is also given.
@S1063-651X~97!06402-7#

PACS number~s!: 64.60.Ak, 64.60.Fr, 05.70.Jk
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Recently, an extension of the mean-field renormalizati
group~MFRG! approach@1,2# has been proposed@3#, which
is capable of dealing with lattice Hamiltonians with two co
pling constants, under certain restrictions on the geometr
the lattice and the ground states of the model. This exten
MFRG ~EMFRG! technique has been applied to a number
different Hamiltonians@3#; in this paper, we present anoth
application of the method, this time to the anisotropic tria
gular Ising model. This is a system of Ising spins on a tria
gular lattice with nearest-neighbor interactions, but with
strength of the coupling being different along the three a
of the triangular lattice. An extensive study of the propert
of this system, including the behavior of correlation fun
tions, has been presented in a series of papers by Stephe
@4#.

In this work we consider a special case of the model
which the anisotropy is more restricted: we take the c
plings to be equal in two directions in the triangular latti
but different from these, in general, along the third one. Th
we have a Hamiltonian with two coupling constants, whi
is the first prerequisite for the application of the EMFRG
it was presented in Ref.@3#; we establish the region in pa
rameter space where the additional requirements for the
plication of the EMFRG are met, and derive th
renormalization-group flows. We show that the EMFRG
successful in producing the qualitative features of the flo
and the fixed points of the mapping. The quantitative ac
racy is typical of MFRG types of techniques and, at t
trivial fixed points of the iteration, the magnetic eigenvalu
are exact. We find that the critical temperature of the mo
is consistently overestimated~in comparison with exact re
sults! and we trace this overestimation to the fact that o
eigenvalue in a particular fixed point is found in this meth
to be marginally relevant. This marginality is an artifa
caused by the finite-cluster character of this approxim
RG; this provides an understanding of the way in which
use of finite clusters affects the estimate of the critical te
perature in this problem.

Let us consider a model Hamiltonian of Ising spi
si561 on a triangular lattice, of the form
551063-651X/97/55~2!/2001~4!/$10.00
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H52J(̂
i j &

sisj2K(
^^ i j &&

sisj2B(
i
si , ~1!

where the first sum is carried over horizontal and rig
leaning nearest-neighbor bonds, the second over left-lea
nearest-neighbor bonds~also called ‘‘diagonals’’!, and the
third over sites (B is the magnetic field.! Alternatively, the
triangular lattice can be thought of as a square lattice w
nearest-neighbor interactions~coupling constantJ) and a
single second-neighbor interaction along left-leaning diag
nals ~coupling constantK) @4,5#. This is the point of view
which we adopt for the rest of the paper.

In the special caseJ5K, the usual triangular~anti!ferro-
magnetic Ising model is recovered, for (J,0) J.0. Simi-
larly, the nearest-neighbor square Ising model with coupl
constantJ results whenK50, whereas ifJ50 the model
reduces to decoupled one-dimensional Ising chains along
diagonals, with nearest-neighbor couplingK.

The ground states of the model follow from a straightfo
ward calculation. Keeping in mind that the problem has be
recast in terms of spins on asquarelattice we find the fol-
lowing T50 phase diagram for the model: in the regio
$J.0;K.2J% the ground state is ferromagnetic~FM!,
whereas in the region$J,0;K.J% it is antiferromagnetic
~AFM!. The remaining region displays infinitely man
ground states; within the domainK,2uJu, the randomness
of the ground state is one dimensional~freedom of combin-
ing plaquettes is restricted along a single horizontal or ve
cal strip!, the T50 entropy scales asN1/2 ~whereN is the
number of lattice sites!, and the entropy per site vanishes
the thermodynamic limit. On the other hand,on the border-
line K5J,0 the ground states have a two-dimensional r
domness, giving rise to the well-known extensive ze
temperature entropy of the AFM triangular model, whi
was calculated a long time ago by Wannier@6#. The same is
true for the other borderline,K52J,0.

According to the general requirements for the impleme
tation of the EMFRG laid down in Ref.@3#, we are going to
2001 © 1997 The American Physical Society
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2002 55BRIEF REPORTS
consider the flows of the coupling constants only in the
gion K>0 where there are just the ordered FM and AF
ground states.

We first summarize the main ideas of the EMFRG, ref
ring the reader to Ref.@3# for details. From Eq.~1! we obtain
the reduced Hamiltonian

H[2bH5J(̂
i j &

sisj1K (
^^ i j &&

sisj1h(
i
si , ~2!

with J5bJ, K5bK, and h5bB. First, we separate th
given bipartite lattice into two sublatticesA andB. Let us
consider, next, two clusters ofN8 andN sites withN8,N
~all primed symbols which appear hereafter refer to qua
ties pertaining to the small cluster, and all unprimed one
the large one!. The methodrequires the use of clusters in
which the two sublattices are equivalent. If we denote
surrounding magnetizations on theA and B sublattices by
b18 (b1) and b28 (b2) for the small ~large! cluster, we can
derive the usual mean-field expressions for the cluster s
lattice magnetizations of the typemA(B)8 (J8,K8,h8,b18 ,b28)
andmA(B)(J,K,h,b1 ,b2). A mapping (J,K)→(J8,K8) in the
even subspace of the Hamiltonian is defined by requiring

mA8 ~J8,K8,h8,b18 ,b28!5 l d2yhmA~J,K,h,b1 ,b2! ~3!

along with

bi85 l d2yhbi , i51,2 ~4!

to hold to leading orders inh andbi . In Eq. ~3! above,d is
the dimension of space, whereas the rescaling factorl is
usually defined asl5(N/N8)1/d. From Eqs. ~3! and ~4!
above, we now obtain the two flow equations in the ev
sector of the Hamiltonian in the form

]mA8 ~J8,K8,h8,b8!

]bi8
U
h85b850

5
]mA~J,K,h,b!

]bi
U
h5b50

,

i51,2 ~5!

whereb8 @b# is a shorthand for (b18 ,b28) @(b1 ,b2)#. It is here
that the requirement for the equivalence of the sublattice
the clusters becomes crucial, because it guarantees tha
flow equations are the same, regardless of the choice o
sublattice magnetization used in Eq.~5! above@3#. The even
eigenvaluesl i ( i51,2) are obtained from the linearizatio
around the fixed pointJ*[(J* ,K* ) of Eq. ~5!. The mag-
netic exponentyh is calculated from the scaling of the su
ceptibility x at the fixed point, namely,
-

-
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*
8 5 l d22yhx* . ~6!

The square lattice is separated into the two interpene
ing square sublattices formed by the diagonals of the orig
one. The two-sublattice EMFRG imposes, clearly, the cho
of clusters with even number of spins, and we will consid
the three smallest values, 2, 4, and 6 in this work. F
N52 the nearest-neighbor bond is an appropriate cluster
the other hand, the form of the present Hamiltonian rules
the choice of the elementary plaquette as a possibleN54
cluster because in this case there appears within the clus
K coupling between two of the spins of the same sublat
which is absent for the two spins of the other sublattice. Th
for N54 we are led to the choice of the parallelogram who
short sides are nearest-neighbor bonds and long sides ar
next-nearest-neighbor diagonals along which the coup
K exists; the latter couples spins in the same sublattice.
nally, forN56 we consider the rectangle which is formed
two adjacent elementary plaquettes.

At first sight, it appears that we can now define thr
possible mappings, namely, 6→4, 6→2, and 4→2. If the
nearest-neighbor coupling vanishes, then theA andB sublat-
tices completely decouple from each other. Then,J85J50
satisfies one of the two equations~5! above for arbitrary
K,K8 in a trivial way, because both sides vanish. This is
equation which relates the derivatives of the sublattice m
netizations with respect to the boundary magnetizations
the other sublattice. The remaining one is then the flow eq
tion for the parameterK. If we use the 4→2 mapping, the
mapping is equivalent to a 2→1 MFRG flow for the one-
dimensional Ising model. On the other hand, the geometr
the N56 cluster is such that for the caseJ50 the cluster
degenerates~for each sublattice! into a two-spin cluster and
an additional one-spin cluster. In other words, the maxim
number of interacting spins in the cluster is, in this case,the
sameas that for theN54 cluster. In that respect, theN56
cluster is not ‘‘larger’’ than theN54 one along theJ50
direction in Hamiltonian space, and it is at first doubtf
whether the 6→4 mapping will be meaningful at all. Indeed
it turns out that if one attempts such a mapping, one obta
theerroneous resultthat at the high-temperature fixed poi
J*5(0,0) there existsone relevant eigenvaluealong the
(0,1) direction. This pathology is due to the reasons
plained above, and therefore a 6→4 mapping is ruled inad-
missible. Hence only the 4→2 and 6→2 mappings will be
considered here.

We begin with the simpler mapping, 4→2. The recursion
relations expressing the renormalized couplings (J8,K8) in
terms of the original ones (J,K) read as
3J8tanh~J8!12K85
e2K@5Jsinh~3J!12Kcosh~3J!#2Jsinh~J!12Kcosh~J!

e2Kcosh~3J!1~21e22K!cosh~J!
~7!

and

3J812K8tanh~J8!5
e2K@2Ksinh~3J!15Jcosh~3J!#15Jcosh~J!

e2Kcosh~3J!1~21e22K!cosh~J!
. ~8!
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The fixed points (J* ,K* ) of the flows in the subspac
K>0 are the following: there are two low-temperature sta
fixed points,L15(1`,1`) representing the FM groun
state andL25(2`,1`) representing the AFM ground
state. There is also the high-temperature fixed po
P5(0,0) representing the paramagnetic phase, which
stable as well. AtL1, the magnetic exponent isyh525d as
it should be, since this point is a ‘‘discontinuity fixed point
andyh5d is a signal of a first-order phase change@7#. At the
paramagnetic fixed point, we obtainyh5d/2, again in agree-
ment with the exact result arising from the consideration t
the paramagnetic-phase zero-field susceptibility is a fi
constant. In addition, there exists an unstable fixed p
L35(0,1`) which represents the zero-temperature orde
state of the one-dimensional Ising chains. Clearly, any de
ture from this fixed point drives the flows away from
Finally, there exist two critical points, which are mirror im
ages of each other with respect to theJ50 axis: the point
C15(0.2605,0.1335) which corresponds to FM criticali
and the pointC25(20.2605,0.1335) which corresponds
AFM criticality. For bothC1 andC2 we find one relevant
eigenvaluel151.252 yielding the estimateyt50.648 for the
thermal exponent~cf. yt51 is the exact value!, whereas the
irrelevant eigenvalue isl250.509. The magnetic exponen
at C1 is yh51.434, to be compared with the exact res
yh51.875. AtC2, we obtain 2yh2d520.131,0, a charac-
teristic of AFM critical points, also found in earlier work@3#
on different models.

From the intersection of the ferromagnetic critical lin
with theK50 andK5J lines we also obtain the estimate
for the critical couplings of the square and triangular fer
magnetic Ising models, respectively, which readJc

sq50.334
~cf. 0.441 exact! andJc

tr50.218 ~cf. 0.275 exact!. These re-
sults, along with the ones obtained from the other mapp
are summarized, for comparison, in Table I.

The 6→2 mapping yields the same low- and hig
temperature fixed pointsL1 ,L2 ,L3, andP as the 4→2 map-
ping, also with the correct magnetic exponentyh5d at L1
and yh5d/2 at P. The two critical fixed points are
C15(0.1770,0.3160) andC25(20.1770,0.3160), with ei-
genvaluesl151.464 andl250.567. The thermal exponen
is now yt50.694 and the magnetic exponent atC1 is
yh51.474; atC2 we have again 0.2yh2d520.238. The
estimates for the square and triangular Ising critical c
plings readJc

sq50.353 andJc
tr50.224. The flow diagram is

shown in Fig. 1; the flow pattern for the previous, 4→2,
mapping is identical to that shown in Fig. 1.

TABLE I. The ferromagnetic critical fixed points of the RG
transformation and the associated critical exponents, the cri
couplings for the square and triangular ferromagnetic Ising mo
as predicted by the present work, and the exact results for com
son.

(J* ,K* ) yt yh Jc
sq Jc

tr

4→2 (0.2605,0.1355) 0.648 1.434 0.334 0.21
6→2 (0.1770,0.3160) 0.694 1.474 0.353 0.22

Exact 1.000 1.875 0.441 0.275
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A few remarks can already be made by looking at t
summary of the results shown in Table I. It can be seen
the quantitative accuracy of the method is typical of the fa
ily of MFRG type of techniques with the use of small clu
ters. The critical couplings are off by about 20%, with
improvement from 24% to 20% forJc

sq and from 20% to
18% for Jc

tr as the order of the mapping is increased. T
critical temperature is overestimated systematically~see be-
low.! The fractional errors on the critical exponents a
larger than those for the critical couplings, but again a sl
improvement is observed as the order of the mapping
creases.

A more detailed analysis of the predictions for the critic
temperatureTc ~Curie point! is allowed by the existence o
an exact expression for this quantity, based on general
duality transformations@5#. The locus of critical points is
given by the equation

e22K5sinh~2uJu!. ~9!

On the other hand, the locus of critical points obtained fro
our approximate RG analysis is given by the critical lines
the fixed pointsC1, C2; in Fig. 1 we plot for comparison the
exact result~9! together with the critical lines obtained from
the 6→2 mapping~the ones obtained from the 4→2 map-
ping run very close to those shown!. Although the RG gives
correctly the ‘‘starting point’’ of these lines atT50 for van-
ishing nearest-neighbor coupling, for finite values ofJ the
approximate critical line runs systematicallybelow the exact
one, thus giving rise to a consistent overestimation of
critical temperature. However, we observe that the shap
the approximate critical line is correct for values ofJ that are
not too close to the origin; the deviation from the exact o
is caused chiefly by its wrong behavior for smallJ, where it
‘‘sticks’’ close to theK axis. It can be seen now that th
behavior is closely connected to the eigenvalues associ
with the fixed pointL3. By symmetry, the two eigenvector
at this point are along the (1,0) and (0,1) directions. T
eigenvalue associated with the latter direction is thus

al
ls
ri-

FIG. 1. RG flows of the present model obtained by the 6→2
mapping. The stars denote fixed points. The dotted lines are
tracted to either the low- or the high-temperature fixed points. T
solid curves denote the basins of attraction of the two critical poi
The dash-dotted curves denote the exact critical lines, Eq.~9!.
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‘‘thermal eigenvalue’’ of the one-dimensional Ising chai
The RG gives for this eigenvalue the erroneous predic
that it is marginally relevant; this can easily be seen by
troducing the variablesv5tanh(K) andt512v which mea-
sure the deviation from the one-dimensional critical poi
and confirming that the present method gives to linear or
t85t close toL3. As a result of this marginality, the trajec
tories in the vicinity of this fixed point~including the critical
line! ‘‘stick’’ on the K axis @8#. On the other hand, exact RG
transformations for the Ising chain yield the relatio
t852t, i.e., the correct eigenvaluel t52 is strictly relevant
@9#. The marginality of the thermal eigenvalue in the on
dimensional Ising model is one of the shortcomings of
MFRG and stems from the use of finite clusters for perfor
ing the mapping. Indeed, as was pointed out in the orig
MFRG paper@1#, the exact thermal eigenvalue in one dime
sion would involve, in this method, the comparison of tw
chains withL andL85L21 spins in the limitL→`. So we
can now see how the finite-size feature of the MFRG affe
~at least in this application! the trajectories: it brings about
distortion of the flow lines due to the wrong prediction of
marginal field which, however, can be cured only by cons
ering infinite clusters. This, in turn, results in the systema
overestimation ofTc as explained above.
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We have presented a further application of the mu
interaction mean-field renormalization method to the ani
tropic triangular Ising model, finding that the method
qualitatively successful in describing the phases of t
model. From the quantitative aspect, we found the typi
deviations of the predictions from the exact results. We p
sented an explanation for the overestimation of the criti
temperature of this model, arising from the finite-size nat
of the approach. The study was limited, at present, to
region of ferromagnetic diagonal couplings, consisten
with the general restrictions of the method presented in R
@3#. The investigation of the region of antiferromagnetic d
agonal interactions, where an infinity of ground states exi
is an obvious challenge and a strong test for the applicab
of MFRG ideas in such ‘‘unusual’’ and interesting case
This would also allow for the study of the antiferromagne
triangular lattice and the associated peculiarities of its ze
temperature critical point. This problem is currently und
investigation.
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